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The Protein Data Bank (PDB) is a large and rapidly growing standard repository of complex

biological macromolecules. Existing software tools for the PDB, including storage management,

are quite inflexible and work in isolation. We are using object-oriented design and object-oriented

database techniques in the construction of a toolbox for the PDB. The main components of the

object-oriented toolbox include: (1) a uniform graphical user interface for fast, intuitive, and

interactive access to the PDB; (2) several interoperable storage managers, compatible with

present and future PDB formats; (3) a new set of efficient, modular, and flexible software tools.

The toolbox is being implemented in C++. We describe our experience in the the implementation

and use of the first prototype, PDBTool, to display, manipulate, and verify the structure of

proteins. This project is a successful collaboration of a Biophysics and a Computer Science

research and development team.
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1 Introduction

The Protein Data Bank (PDB) [11 is the international repository for 3-dimensional structural

information on biological macromolecules. PDB includes data derived from X-ray crystallog-

raphy, Nuclear Magnetic Resonance, and theoretical simulation. The PDB is maintained and

distributed by the Chemistry Department at the Brookhaven National Laboratory (BNL). The

June 1992 distribution of the PDB contained approximately 1000 structures distributed as a set

of ASCII files for a total of 300MB. Like other biological databases such as the Genome Data

Bank, the PDB is growing exponentially, and at least 10,000 structures are expected by the year

2000. PDB is a potentially rich source of information for innovative biological research.

Unfortunately, the current distribution of PDB uses a FORTRAN card format makes the

information access difficult. In particular, PDB data organization makes query relative to mul-

tiple structures, an important inference if structure-function relationships are to be established,

difficult and therefore impedes scientific enquiry. Moreover, a very useful AUTHORIN tool,

which checks the integrity of a structural submission prior to submission to BNL and also used

by BNL to check submissions on arrival, is not publicly available at this time and hence the

time to process and register a structure in the PDB is unnecessarily long.

To. overcome these difficulties, we are building the Object Oriented Protein Data Bank

(OOPDB) [51 toolbox, which will provide structure query capability and operate in a dis-

tributed environment over heterogeneous and interoperable databases. Our first goal is to build

a prototype persistent and easily queried database for all protein structures and at the same

time a verification tool to check the integrity of a sing.e structure. The long-term goal of the

project is to support different database back-ends such as object-oriented or extended relational,

with a Graphical Users Interface (GUI) front-end to analyze, query, update and graphically rep-

resent protein structure. In short, we intend to create a object-based tools using state-of-the-art

software engineering techniques; these tools will become an innovative and efficient software

instrument for biologists.

This report describes the architecture, initial implementation, and features of PDBTool,

a prototype structure verification tool. PDBTool illustrates many of the features in terms of

data structures, query methods, GUI, and standard interfaces that we anticipate to include

in OOPDB [5]; persistence and methods for managing persistence objects are being included

in the adoption of ObjectStore, a commercial object-oriented database management system

(OODBMS) supplied by Object Design, Inc. This prototype results from a joint effort between

the departments of Computer Science and Biochemistry and Molecular Biophysics at Columbia

University. This collaboration is the only funded project between these two departments at this

time.
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2 Related Work

Several efforts are in progress to better manage PDB data to assist in scientific query. SESAM [8]

and NDB [2] are based on relational data model, using the Sybase commercial database system.

NDB includes exclusively DNA and RNA structures (no complex proteins). Idisis [10] is also

relational and originally used the ORACLE commercial database system. Idisis now has its

own proprietary storage manager. An alternative approach is used by PKB [4] which although

relational in structure is coded in S, a language for statistical analysis. These relational models

differ in their database schema, as well as the number and type of derived variables and how those

variables are organized. None of these relational databases effectively addresses the impedance

mismatch problem between the flat relational tables and complex protein structures. None of

these database efforts uses a GUI at this time. To alleviate the difficulties of writing SQL queries,

SESAM uses ALI.

The only object-based effort is P/FDM [9]. P/FDM is implemented in Prolog and supports

DAPLEX, a functional language for queries into the database. The main purpose of P/FDM

is to investigate schema definition and rigorous modeling of protein structures. Being more

practical and concerned with efficiency and usability, OOPDB is seen to complement the more

formal P/FDM approach. At this time there are no object-based verification tools for testing the

reliability of a macromolecular structure, although a number of individual FORTRAN programs

exist. A subset of these FORTRAN programs are available in the Crystallographic Workbench

(CW) [31 and are used to validate the new methods developed for PDBTool.

3 Internal Structure and Interface

3.1 User Requirements

One advantage in our collaboration is the presence of biologists in the definition of user require-

ments for the project. Since we are concerned with the practical use of the OOPDB toolbox,

the biologist views are taken very seriously. The requirements on the toolbox can be divided

into three parts: user interaction with PDB, programmer interface with the toolbox, and inter-

operability. We will briefly summarize each one in turn.

User interaction with the PDB must be natural, with the software as imperceptible as possi-

ble. To take the software "out of the way" of biologists, a simple GUI was chosen. The GUI must

present protein structures at different abstraction levels, namely: polypeptide chain, secondary

structure, amino acid residue, and atom. Furthermore, the GUI must be responsive, with quick

real-time feedback to user commands to view or edit the molecular structure displayed. From

this uniform GUI users should be able to invoke the software tools from the toolbox through
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simple menus and the results shown immediately on the screen.

Similarly to the user interaction requirements, the programmer interface to the tools must

be simple and natural. The different abstraction levels enumerated above should be accessible

to programmers without details of particular data structures. The OOPDB toolbox should

hide the technical details of data representation and invocation interfaces as much as possible.

Therefore. scientific programmers that write the tools can concentrate on the specific scientific

mission of their tool, instead of syntax for input/output, query language, or data structure

parsing. Furthermore, the integration of tools into the toolbox should be simple and easy, if the

programmers follow our programming interface.

Finally, to reach the widest possible segment of the user community, we want interoperabil-

ity at all levels. At the basic level we support open system hardware and software foundations

for our toolbox, UNIX systems running on SUN and SGI workstations. The other components

of our system are also standard: FORTRAN-90, ANSI C, and AT&T C++ programming lan-

guages, plus X windows and Motif for windows. However, we have to support a number of

storage managers since different tools adopt different formats: PDB file format, the new Crys-

tallographic Information File (CIF) format, the relational data stored in Sybase (SESAM), and

some representative OODBMS.

3.2 Object Oriented Approach

From the requirements above, we have chosen an object oriented approach to manage our data.

The complex structure of protein molecules map well into the structuring capabilities of object-

oriented systems, particularly OODBMS. Object identities, object and data encapsulation, data

abstraction, as well as inheritance for its hierarchical structure, have helped us manage and

understand protein structures in a much simpler way.

Our PDB schema definition (Figure 1) is derived from our experience in manipulating PDB

data and previous work, notably P/FDM [91. We start with the definition of a separate class for

each corresponding abstraction level of proteins: protein, chain, secondary structure (derived

classes: helix, strand, turn), residue, atom. The relationships between these basic data classes

are captured in operational classes that mat.-.ulate data classes. For example, each protein can

enumerate its chains through a C++ iterator, and chains can enumerate their residues, and

residues can enumerate their atoms.

One advantage of object-oriented approach is extensibility. Currently we don't define data

source specific information in separate classes. For example, attributes in PDB files or CIF

generated files are attached to each molecule. In the future we will separately define those classes,

so we may have PDBProtein which will inherit, both, from Protein and PDBProtein.Info, or

4



SAccesion F:or/
NTIS CRAM

D OTIC TAB E

SUfianrnounced 0

By__ _ _ _

S Ava!iabllity Codes

I~j SLd oUIT

Figure 1: PDBTool Schema

CIFProtein which will inherit from Protein and CIF_.ProteinJn~fo. Since current tools do not

iise this information, the decision on the new classes can be postponed.

3.3 An Architecture for Scientific Data Management

We have designed a genera architecture for the OOPDB toolbox. It contains three main compo-

nents: software tools, user interaction, and backend storage. The software tools will be accessed

through a GUI and they will manipulate data stored in heterogeneous backend storage managers.

This architecture is motivated by:

The requirement to have a uniform GUI for users of the toolbox, which isolates the GUI

from the rest of the toolbox. A GUI can be defined as a user interface which uses graphical

elements to communicate information to users. GUI environments include Open Look,

Motif, the Apple Macintosh interface and Microsoft Windows. GUI environments typically

present information with windows and icons, and uses a mouse or pointing device in

addition to the standard keyboard for user input.

GUIs are particularly suitable for direct-manipulation, user-centered user interfaces, in
which the user directly interacts with objects instead of having to, for example, enter

typically obscure commands on a command line like with a specific query language. In

addition, available commands are always visible to the user without having to remember

complicated sequences of commands in order to perform a certain task.
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* The requirement for heterogeneous storage managers, which imposes an abstract interface

between them and the software tools. This is the only way to support uniform access

to heterogeneous backends. Although we support the standardization of scientific data

representation, be it for information access, archival, or interchange, we recognize the

reality of different storage managers used in different applications and their proliferation

for many valid reasons. Standard formats and storage management will make our task

easier, but our approach fully integrates heterogeneous storage managers.

9 The requirement for the tools to be interoperable and data to be interchangeable. This

includes for example data exchange among heterogeneous storage managers and tool inte-

gration with the uniform GUI as well as heterogeneous storage managers.

This architecture with three components has shown an applicability beyond the OOPDB. In

the management of other scientific data, such as computational chemistry (ab initio calculations),

material sciences (waste control), and atmospheric sciences (weather prediction by integration

of ocean, ice, and boundary layer models), the same architecture is being used. PDBTool was

designed using this architecture, with the three main components described below.

3.4 The Implementation

The prototype PDBTool was developed on Sun SPARC workstations using SUNOS version 4

release 1.2. The prototype currently runs on all Sun SPARC workstations. The prototype

has been tested on an IBM RS/6000, model 320E under AIX version 3.2 as well as an SGI

Elan workstation under Irix version 4.0.1 as X servers. (SUNOS, AIX, and Irix are compatible

variants of the UNIX operating system.)

On top of the hardware and operating system, the libraries and utilities used by PDBTool

include: SUIT v2.2 (Simple User Interface Toolkit) [11], X Windows V11R5, and Cfg math

library. These are all publicly accessible software packages. The toolkit itself was divided

into components and modules in order to simplify its implementation and incite future code

reusability. The modules are:

" [The Graphical User Interface] For the GUI we used the Simple User Interface Tool (SUIT)

[6] software developed at the University of Virginia. SUIT provides a set of graphical

widgets to represent data under the X Window System environment. Figure 2 shows how

the screen looks like.

"* [Verification Tools] The verification tools are exemplified by a Ramachandran plot which

illustrates the distribution of the 4 versus 1 dihedral angles in the polypeptide backbone
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of a protein structure. The plot is divided into a number of allowed and disallowed regions

based on geometric constraints within the protein. Instances of .0 versus 10 dihedral angles

outside the allowed regions may indicate errors in the structure.

The Ramachandran plotting tool was broken up into two parts: calculation and display.

Calculation involves deriving the 0 and 10 angle of each residue by traversing through the

protein. The functions necessary to find these dihedral angles were translated by hand

from FORTRAN IV to C++ [7]. The FORTRAN IV code was taken from the program

PHIPSI written at BNL. During development, the calculation code could not be tested,

because it could not access the protein information. Displaying data involved using SUIT

to create a pop-up window that is positioned at a fixed place on the screen. The display

programs includes simple windowing primitives, including pop-up displays and refreshing

the plotting window spaces. Figure 2 shows the Ramachandran plot as a window on the

lower right hand corner of the PDBTool.

* [The Storage Manager] was implemented on PDB flat files, the current standard storage

file system for the crystallographers community. The storage manager contains two main

modules, the File Importer and the Sequential Access Method.

* [File importer] To implement the file importer we designed several classes and methods to

store the data from the PDB file. In this prototype version, the PDBrool can only work

with PDB files. Hence the file importer module reads the PDB file into memory-resident

classes. Currently only primary and secondary structure information are loaded, as well

as some miscellaneous PDB header information such as remarks, authors, and expiration

date.

* [Sequential Access Method] Iterator is a facility provided by the toolbox to enumerate

objects sequentially. Its main use is for applications to traverse objects of the same class

at each level of protein class hierarchy. Each iterator may be treated as a set, since biolo-

gists tend to treat protein as a set of residues, atoms, or secondary structures, PDBTool

naturally reflects this fact.

Filters provide sequential access to protein residues which fit a certain residue type cri-

teria. For example, given a specific residue type, a Filter will return an Iterator of its

component atoms. Iterators and Filters provide an abstract set interface on top of protein

classes. When PDBTool is adapted to work with other data sources, like SESAM, CIF,

and ObjectStore, the implementation changes will be encapsulated in the iterator and

filter interfaces, which remain the same to the software tools.
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Figure 2: PDBTool Environment

3.5 Features

PDBTool represents a novel approach to the goal of structure verification. Traditionally scien-

tists run a single program to test a specific aspect of the structure, analyze the results and begin

a new program. PDB offers a more intuitive approach through a continuous interaction with the

structure under study. This interaction is facilitated by the GUI which is divided into 2 distinct

areas. At the lower right, a square was reserved for the viewing of the results of calculations.

The rest of the screen was used for browsing the structural details in a hierarchical manner.

In addition there are a number of radio buttons at the upper right hand corner, that permit

you to review the header information contained in the PDB file, for example, bibliographic infor-

mation, remarks mad by the author, and revisions to the PDB entry. Finally, pull-down menus

contain commands for reading protein data and invoking verification methods. Two additional

buttons are available for the user to look at the author credits and copyright information, and

to exit PDBTool.

3.5.1 Browsers

The protein data browsers display the protein data in a hierarchical fashion which represents the

organization of protein structure. A chain browser subwindow shows a sequential list of chains
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which make up the protein. If an item in the chain browser subwindow is selected (highlighted),

the sequence of residues which make up that chain is displayed in the residue browser subwindow

below. Likewise, selecting an item in the residue browser subwindow will cause the atoms which

make up that residue to be displayed in the atom browser subwindow below. This atom browser

displays atom information in column-wise order used by the PDB; namely, atom name x,y,z

coordinates, temperature factor and occupancy. The secondary structure browsers works in a

similar fashion.

A feature unique to the primary structure browser is a viewing filter. If the text box labeled

"View residue types" contains the word "All", then all residue types are listed in the residue

browser subwindow. On the other hand, if the text box contains the three-letter or single-letter

code for a particular residue, only residues matching that code will be listed.

3.5.2 Viewer

In our first demo in August 1992, PDBTool offered one verification tool, the Ramachandran plot.

Because of the modular design of the program, other tools will be simple to add in later. The

Ramachandran plot can only be called when a protein has been loaded. When the plot is called,

it will bring up a graph in the viewer. The plot is a graph of the .0 versus ik torsion angles of the

residues within the current protein. The plot only displays those residues that match the filter

conditions of the browser. The filter condition controls which type of residues are displayed, the

default is all. These torsion angles are displayed on an energy contour map, which defines where

most -0/0 coordinates should lie. Points that fall within the expected contour are marked as

filled black circles. Points that fall outside of the contour are marked as empty yellow circles.

Points outside of the acceptable regions indicate potential errors in the structure. Within the

plotting area zoom-in and zoom-out are allowed in order to seeing high concentration of clustered

points more clearly.

Zoom-in is accomplished by depressing the left mouse button and tracing two opposite corners

of a rectangle. Zoom-out is accomplished by depressing the right mouse button and holding it

down for about a second. Because the yellow points are usually considered of interest, they can

be selected by clicking the left mouse button while over the point of interest. Doing so will bring

up an alternate pop-up window, which will overlap the secondary structure atom browser. This

window contains the name of the protein, the chain, and the residue of the selected point. It

also contains the calculated 46 and ?p values for the residue. Like the Ramachandran plot itself,

this pop-up window has a close button.
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4 PDBTool Development

4.1 Evaluation of Substrate

For the development of PDBTool, we have decided to use standard components that are widely

available. Our experience with SUN and SGI workstations and standard programming languages

such as C++ has been good. It is not our intention to defend the merits of C++ as an object-

oriented programming language. We simply found it to be useful in structuring our application,

reliable in compiling our code, and helpful in the modular construction and testing of the system.

(See next section.)

Our experience with the SUIT user interface builder is largely positive, corroborating the

SUIT implementors' experience [11]. SUIT was developed primarily as a teaching tool, but we

decided that SUIT was more suitable for PDBTool than, say, an X-windows based toolkit such

as Motif or Xt, for several reasons:

"* Nearly all members of the team have little or no GUI programming experience.

"* SUIT is very easy to learn and use, and has a documented average learning time of two

hours for novice GUI programmers.

"• SUIT allows graphical editing of the GUI appearance and behavior.

"* SUIT has an adequate set of widgets.

"* SUIT is free and readily available for several platforms, including Sun and Silicon Graphics

workstations, which PDBTool must run on. It also alleviated our need to search for and

purchase a commercial product with similar capabilities.

The resultant SUIT-based interface consists of two major components (Figure 2) a browser

(on the left) and a visualizer (lower right). Integrating the code was quite smooth due to the

coding approach we followed. Programmers were able to use each others' function prototypes

without actually having to compile each others code. The main problem during integration was

due to the packages we were working with: The SUIT [6] code was written to work under C, not

C++ [7]. While the standard SUIT calls could be called from a C÷÷ block, we had to modify

the SUIT function prototypes to allow the C++ routines access to the lower-level graphics calls

through SUIT.

4.2 Testing

Taking advantage of object-oriented implementation, we were able to hierarchically test the

prototype PDBTool. Most modules were independently tested in a bottom-up modular approach
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[12], in order to check its correct functionality with independent tests run on each, and to

check for correct mathematical and geometrical calculations. For example, the file importer was

exhaustively tested with already existing PDB files. For the Access Methods module, we tested

reachability, meaning, checking that all objects were reached in the proper sequence without

missing any of them.

The verification tools module was tested as a subsystem. It was first integrated with the file

importer module. Then it was loaded with the available data, passing it through the verifica-

tion algorithms, (like torsion angle calculation) and comparing its results with already existing

outputs, in order to check that the program conformed to its specification. Boundary testing

was also used to test for unusual cases. For the GUI we used visual testing to see the proper

arrangements of the SUIT [61 widgets on the PDBTool window.

Once all modules were integrated into a single executable unit, system testing was conducted

to iron out the interface incompatibilities and system bugs. From a practical viewpoint testing

involved a review by crystallographers at the summer 1992 meeting of the American Crystallog-

raphy Association (ACA). PDBTool was well received at this meeting and the notion of a more

intuitive approach to structure verification acknowledged.

4.3 Adding New Tools

Since our first demo we have been busy adding new tools to the PDBTool. This section will be

written as new tools are completed and incorporated into PDBTool.

4.4 Current work

Currently we are extending our prototype classes and structures into an environment managed

by an OODBMS such as ObjectStore, ODE or 02. Persistence will allow us to extend the field

of action to manipulating more than one protein at a time, with the subclasses chains, residues,

secondary structures and atoms in a single workspace. Future enhancement to the PDBTool

also include interoperability with ( her commercial OODBMS and relational databases such as

Sybase as back-ends.

Another area of attention is the management of inconsistency and uncertainty in the PDB.

Concretely, some structures do not contain all the atoms. So far, each software tool has to

handle the missing atom problem by itself. We are studying several alternatives in representing

missing atoms and how the tools can deal with them in the least painful way. Another similar

problem is the alternative conformation of atoms. Due to thermal movements, some atoms have

inherently unstable locations. We are implementing a standard interface to encapsulate the

uncertainty and alternatives.
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Intuitively the central focus of structure verification is the 3-dimensional representation of

the actual protein structure. We have developed PDBview, based on data structures used in

PDBTool first as a stand alone structure viewer and later as a new display option in PDBTool.

PDBview is based on X/Motif and runs on any X server. PDBview offers real-time rotation and

translation and various labeling options. Part of our current efforts is to improve the PDBview

towards an interactive molecular editor/browser.

5 Conclusion

From the computer science point of view, the project has needed many software engineering

techniques. Technically, it started from understanding concepts in structural biology, to taking

requirements specifications, designing their classes, designing the prototype in modules, to test-

ing them and expanding them. Managerially, it started from project planning, to scheduling

meetings and forming the appropriate software development teams, to defining and meeting

deadlines, to making smooth transition between project students. We have found that current

software engineering practices can be effectively used in building a non-trivial scientific applica-

tion (the PDBTool) on time, with good performance and reliability, plus successful continued

development.

PDBTool is a result of the first collaboration between the departments of Computer Science

and Biochemistry and Molecular Biophysics. It has been successful in introducing better coding

practices among basic scientists in biochemistry who had limited experience in designing pow-

erful data structures and implementing object oriented techniques. On the other hand, it has

introduced computer scientists to real-world problems from the data rich domain of molecular

biology. It is our intention to seek further funding to extend this level of interaction in the pro-

duction of powerful, usable, maintainable, and extensible software instruments for the molecular

biology community to simplify, improve and speedup their scientific research.

A Glossary

ALI A Line Interface. A domain specific 4th generation query tool, which translate pre-defined

more common types of query into SQL.

CIF is a controlled vocabulary used to reference the structure and the experiment that derived

the atomic structure. CIF is based on the more general Standard Archival and Retrieval

(STAR) format. The base CIF dictionary has been ratified by the International Union of

Crystallography and extensions for macromolecular structures are currently being defined.

CIF is expected to be endorsed by the scientific community in the next 1-2 years.
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Daplex is a query language for the functional data model; described by D.W.Shipman in the

ACM Transactions of Database Systems 6:140-173, 1981.

IDISIS is derived from Biped, a relational database which used the commercial product Oracle.

Idisis replaces the commercial backend with a backend developed by Oxford Molecular

who market Idisis. Idisis is the work of Janet Thornton and colleagues, London. Idisis is

organized to favor searches relating structure to sequence.

NDB The Nucleic Acid Database is a relational database, based on SYBASE which contains

experimental and derived information on nucleic acid structures, namely single and double

stranded DNA and RNA. NDB was developed by Helen Berman and Colleagues at Rutgers

University.

RNA Ribonucleic Acid. A first step of protein synthesis. It is a transcription which produces a

single strand of messenger RNA (mRNA) from the double stranded DNA. It is this single

stranded mRNA from which the protein is produced in the process of translation. In short,

RNA is vital to protein synthesis.

PDB The Protein Data Bank (PDB) is the international repository for macromolecular struc-

ture information on molecules of biological interest. The July 1992 release of the PDB

contained information on 957 structures with atomic coordinates. The structures are pre-

dominately proteins, with a few DNA, RNA, carbohydrates, and complexes thereof. The

PDB is maintained by the Chemistry Department at the Brookhaven National Laboratory

and distributed on magnetic tape and CDROM on a quarterly basis. Recent releases are

available via ftp.

P/FDM is an object oriented database developed by Peter Gray and Colleagues, Aberdeen.

P/FDM organizes classes following the natural hierarchy in proteins protein, residue and

atoms, and uses Prolog and the Daplex query language.

PKB provides a file structure and query mechanism for PDB data. It is based on the statistical

language S, and hence is good for statistical analysis of the PDB. PKB was developed by

Steven Bryant of the National Center for Biotechnology Information.

SESAM is based on the relational database SYBASE and contains data obtained from the

PDB. Additionally a number of derived fields have been tabulated which are concerned

with the energetics of proteins. Unlike the other relational databases which are accessed

using SQL, SESAM has ALI. SESAM was developed by Shoshana Wodak and colleagues

in Brussels, Belgium.
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